

Poland's heating country profile: breaking down the context for recommendations

Cele strategiczne sektora ciepłownictwa w Polsce

George Stiff, ICLEI Europe

Centrum Zielna, Warszawa January 25, 2018

Energy context of Poland

Energy demand

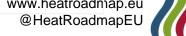
• Total final energy demand (FED) [1]:

724 TWh (**5.7% of EU28**)

- 6th highest among 14 HRE target countries (and EU28)
- FED from renewables [2]:

85.3 TWh (11.8% of total FED)

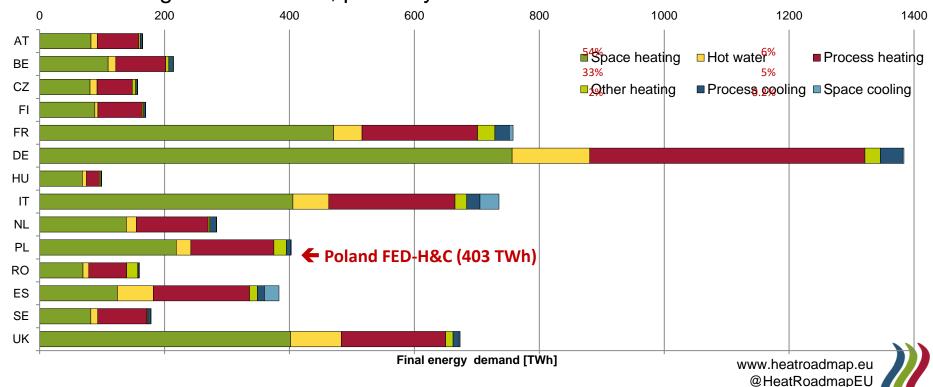
- 11th highest of 14HRE (**21**st of EU28)
- FED-H&C from renewables ^[2]: 57.5 TWh (14.3% of total H&C)
 - 10th highest of 14HRE (**20th** of EU28)


Heat Demand Density, only for residential and service sectors, from Peta4 showing major population centres [HRE4, 2017]

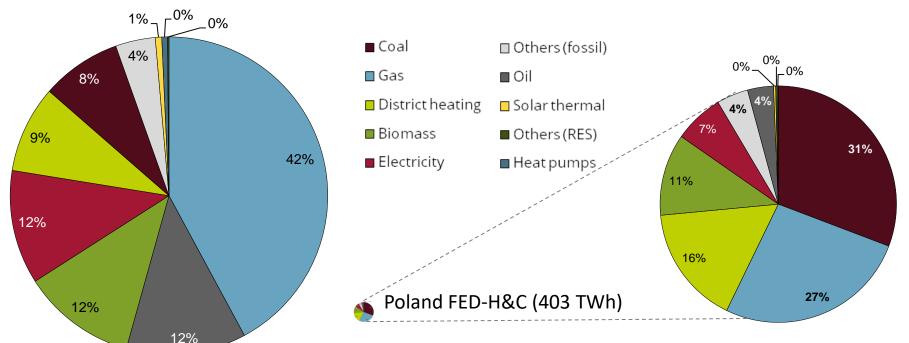
Climate and emissions

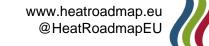
- Poland has committed to increase its GHG emissions by no more than 14% by 2020 as compared with 2005 levels [3]
 - 382 mil. tons CO₂-e (8.6% of EU28, 5th highest) [4]

CO ₂ -e per capita [kg CO ₂ -e/person]	CO ₂ -e per GDP [tons CO ₂ -e/billion EUR]	Carbon intensity (CO ₂ -e per ton of energy carrier) [kg CO ₂ -e/toe]
8,221	775	3,314
6 th highest among the 14 HRE	The highest among the 14 HRE	The highest among the 14 HRE
2014 data ^[4]		www.heatroadn

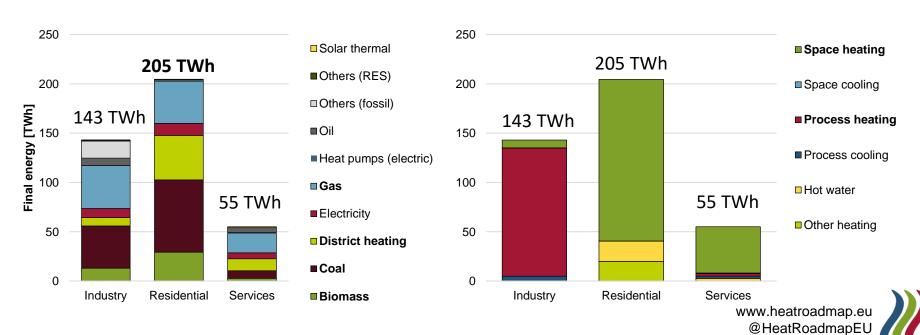


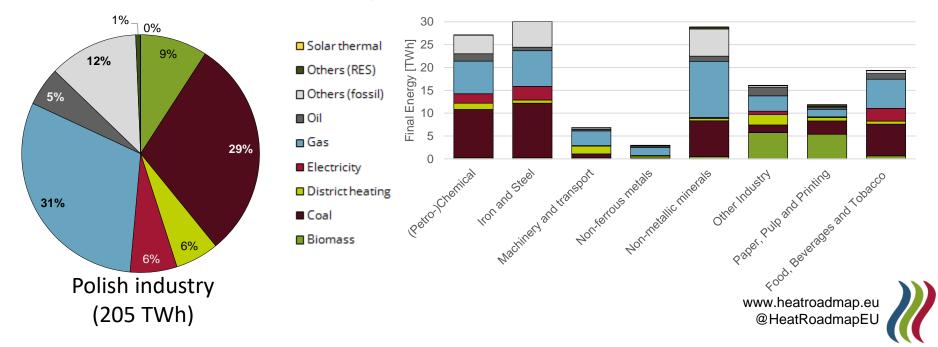
Current national H&C situation


H&C in Poland and 14 HRE countries

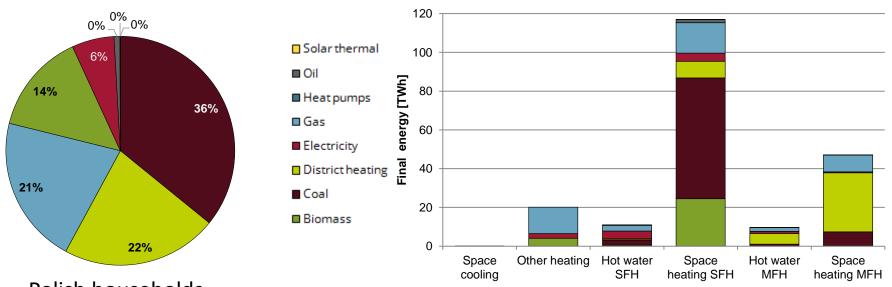

- Among EU28 countries, Poland has the 5th highest FED-H&C (403 TWh)
 - **56%** of Poland's total FED (724 TWh)
- As with most countries, Poland's H&C is dominated by space and process heating, and little cooling demand at the moment, but this is rising across the EU, probably also in Poland

Polish H&C energy carriers


- Poland accounts for 6.3% of the EU28's total delivered H&C demand
- Compared to the EU28, it uses less gas and oil, but almost 4x more coal, and more DH


H&C breakdown among sectors

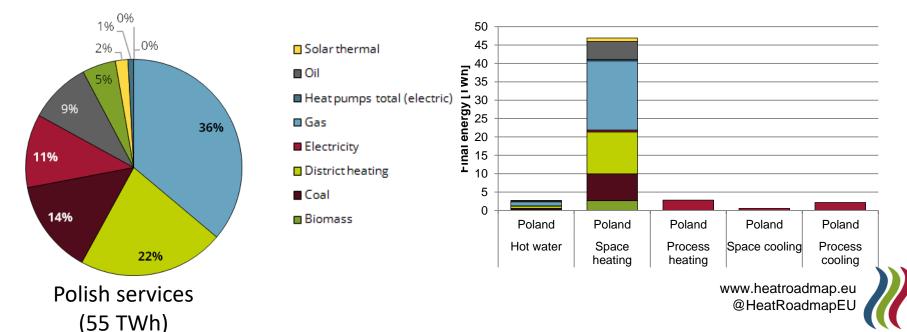
- All sectors rely (too) much on fossil fuels for H&C, especially coal and gas
 - while the residential sector (largest demand) also relies significantly on district heating and biomass
- Polish industries are overwhelmingly dominated by process heating, other sectors by space heating


Industrial H&C in Poland

- Industry relies 77% on fossil fuels, mainly (64%) for high temp. (>200°)
- The metals, non-metallic minerals, (petro-)chemicals and food/ beverages/tobacco industries rely (too) much on coal and gas
 - Why does the Food industry rely so much on fossil fuels, if it's mainly making use of low-temperature processes?
 - Which more sustainable alternatives could decarbonise Polish industries, make them operate more energy-efficiently and reduce waste?

Residential H&C in Poland

- Polish households use mostly (57%) fossil fuels (coal and gas) for H&C but there is also a significant use of district heating and biomass
- Space heating dominates (80%), especially single-family homes (SFHs)
 - Multi-family homes (MFHs) are the primary market for district heating
 - What other options could be found to decarbonise, especially in (decentralised) SFHs?



Services' H&C in Poland

- Space heating also dominates (85%) Poland's service sector
 - For cooling, only wholesale/retail, and some hotels, etc.
- Poland's service sector relies mostly on gas and district heating, with significant use of coal and electricity, too
 - All cooling and process heating exclusively powered by electricity
 - Might there be a better way to deal with the service sector's H&C needs?

EU's H&C challenges valid in Poland?

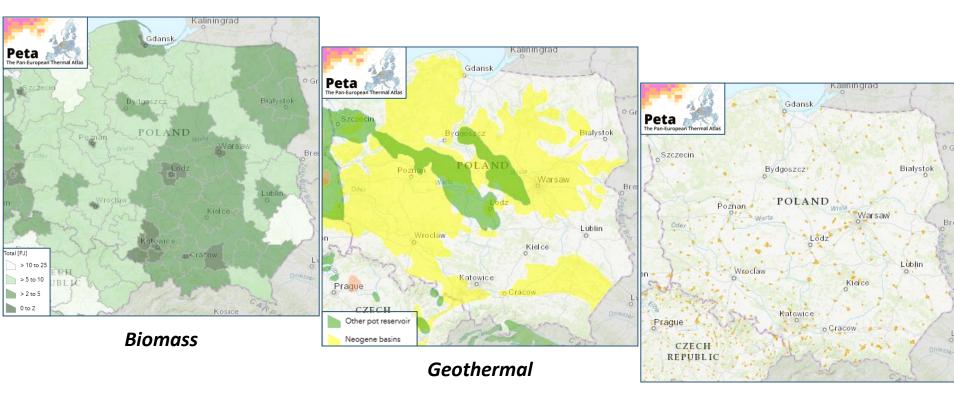
Please *raise your hand(s)* if you think this applies to Poland:

- 1. Over-reliance on fossil fuels
- 2. Lack of **renewable** inputs
- 3. Too much wasted heat
- 4. Insufficient and/or unsustainable district systems
- 5. Inefficient **H&C systems** (supply-side management)
- 6. Inefficient **buildings** (demand-side)
- 7. Inadequate access to tools and data for strategies
- 8. Weak and/or counterproductive **policy** framework

Steps forward for Poland

1. Phase out fossil fuels!

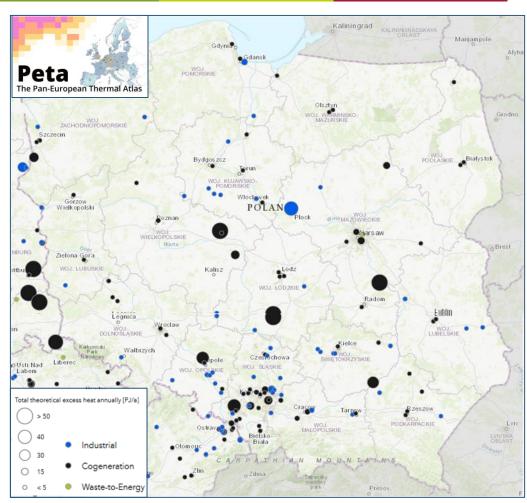
- Remove fossil fuel subsidies, direct and indirect
- Fewer fossil fuels lead directly to lower CO₂-e, like the newer CoM-EU targets for 2030 ^[5]:
 - 40% less CO₂-e 27%* more RES 30%* more efficiency


Signatories	Population	Commitments	Status
Bestwina, PL	10,315	2020	
Bielawa, PL	33,000	2020	
Bielsko-Biala, PL	178,000	2020	
Bydgoszcz, PL	363,020	2020	
Chorzele, PL	2,783	2020	
Częstochowa, PL	235,798	2020	
Dąbrowa Górnicza, PL	121,500	2020	
Dzierżoniów, PL	34,168	2020	
Ełk, PL	57,449	2020	
Gdynia, PL	247,428	2020	
Gniewino, PL	7,100	2020	
Grybów, PL	6,188	2020	
Jasienica, PL	20,807	2020	
Jaworze, PL	6,883	2020	
Kolbuszowa, PL	25,144	2020	
Kościerzyna, PL	23,138	2020	
Kozy, PL	12,000	2020	
Lubianka, PL	6,400	2020	
Miasto i Gmina Sztum, PL	17,999	2020	
Niepołomice, PL	23,952	2020	

Signatories	Population	Commitments	Status
Piaseczno, PL	66,000	2020	
Pilzno, PL	18,090	2020	
Porąbka, PL	15,140	2020	
Pruszcz Gdański/Miasto, PL	28,566	2020	
Płock, PL	122,000	2030 ADAPT	
Raciechowice, PL	6,000	2020	
Sopot, PL	37,550	2020	
Śrem, PL	31,500	2020	
Szczyrk, PL	5,860	2020	
Toruń, PL	191,276	2020	
Urząd Gminy Tryńcza, PL	8,426	2020	
Ustka, PL	16,467	2020	
Warsaw, PL	1,680,000	2020	
Wilamowice, PL	14,200	2020	
Wilkowice, PL	11,112	2020	
Wrocław, PL	634,487	2030 ADAPT	
Władysławowo, PL	14,892	2020	
Zarszyn, PL	9,286	2020	
Żyraków, PL	13,684	2020	
Łękawica, PL	4,375	2020	

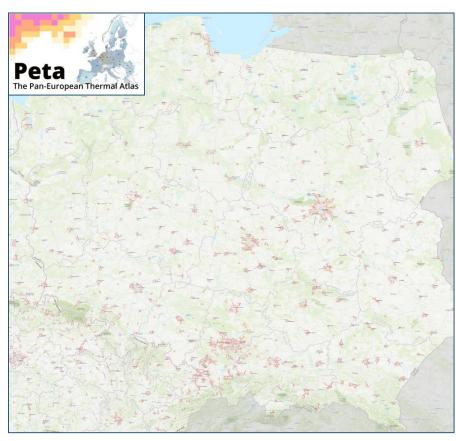
2. Switch to renewables!

 Especially important for decentralised systems, as well as district-level scales



Solar thermal

3. Utilise (low-carbon) excess heat!


- Peta4 shows > 130
 potential sources of to be exploited for excess heat:
 - Industrial
 - Cogeneration
 - Waste-to-energy
- Together ⇒ ~290 TWh
 - > entire residential and service sectors' H&C demand (260 TWh)
 - However, should all really be exploited?

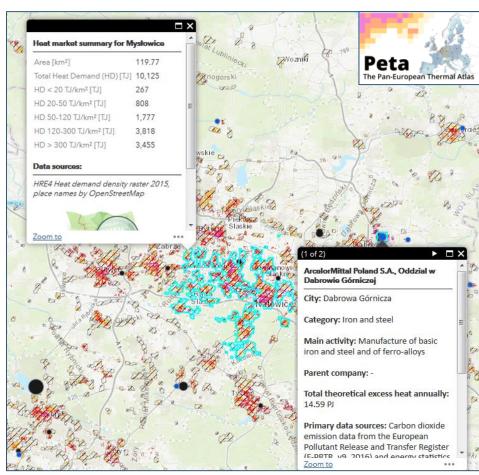
Excess Heat sources from <u>Peta4</u> showing major facilities [<u>HRE4</u>, 2017]

4. Expand existing DH systems!

Prospective DH systems, from the Peta4 online platform [HRE4, 2017]

5. Increase supply-side efficiency!

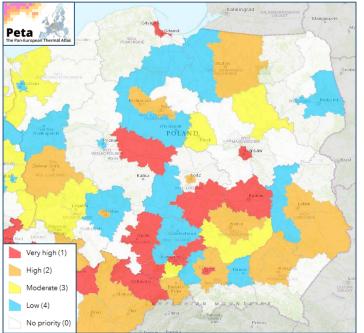
- Feed in more (proper) investments
- Improve maintenance and management practices (e.g. ISO 50001)


6. Accelerate demand-side savings!

- Incentivise deep renovations of existing building stock, not just improved standards for new ones
 - Occupants' behaviours (through smart solutions)

7. Facilitate data/tool exploitation!

- Make sure that the necessary data is generated and distributed:
 - It should be verified and updated
 - Put into usable tools/ formats for lead-users
 - Made accessible to those who need it for research and planning



Comparing **Katowice**'s heat demand to excess heat, from the <u>Peta4</u> online platform [HRE4, 2017]

8. Develop enabling frameworks!

- Stimulate RES + EE, not the status quo (i.e. fossil fuels)
 - Remove burdens to homes and small businesses to innovate
 - RES + EE support schemes, both decentralised and DHC
- Strategically plan RES, EE and DHC
 - Demand- and supply-sides
 - Government and businesses' strategies

Heat Synergy Regions (NUTS33) from Peta4 [HRE4, 2017]

- DHC should utilise (low-carbon) excess heat:
 - Heat Synergy Regions
 - Cross-border collaborations
- Take advantage of data and tools
 - We invite all of you to use HRE to not only develop policies, but also bring them to life!

HRE can work for you!

- No matter which institution you represent,
 HRE will benefit you
 - Local, regional and national authorities
 - Energy agencies and consultants
 - H&C providers
 - Energy technology companies
- HRE resources can:
 - orient you towards feasible solutions
 - facilitate cost-effective investments
 - feed directly into your planning processes
 - apply scenarios for long-term roadmaps

Thank you! Questions? Dziękuję! Pytania?

George Stiff

Sustainable Resources, Climate and Resilience team - Officer

george.stiff@iclei.org

